Integrated Spatio-temporal Data Mining for Forest Fire Prediction

نویسندگان

  • Tao Cheng
  • Jiaqiu Wang
چکیده

Forests play a critical role in sustaining the human environment. Most forest fires not only destroy the natural environment and ecological balance, but also seriously threaten the security of life and property. The early discovery and forecasting of forest fires are both urgent and necessary for forest fire control. This article explores the possible applications of Spatio-temporal Data Mining for forest fire prevention. The research pays special attention to the spatio-temporal forecasting of forest fire areas based upon historic observations. An integrated spatio-temporal forecasting framework – ISTFF – is proposed: it uses a dynamic recurrent neural network for spatial forecasting. The principle and algorithm of ISTFF are presented, and are then illustrated by a case study of forest fire area prediction in Canada. Comparative analysis of ISTFF with other methods shows its high accuracy in short-term prediction. The effect of spatial correlations on the prediction accuracy of spatial forecasting is also explored.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Spatio-temporal Data Mining and Knowledge Discovery (stdmkd) for Forest Fire Prevention

Forests play an important role for sustaining the natural environment of human living. Forest fires not only destroy natural environment and ecological equivalence, but also threaten security of life and wealth to people. This paper presents applications of Spatio-temporal Data Mining and Knowledge Discovering (STDMKD) for forest fire prevention. The special attention of the research is paid to...

متن کامل

A Data Mining Framework for Forest Fire Mapping

Forests are an important natural resource that support economic activity and play a significant role in regulating the climate and the carbon cycle, yet forest ecosystems are increasingly threatened by fires caused by a range of natural and anthropogenic factors. Mapping these fires, which can range in size from less than an acre to hundreds of thousands of acres, is an important task for suppo...

متن کامل

Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery

Computing fire danger and fire risk on a spatio-temporal scale is of crucial importance in fire management planning, and in the simulation of fire growth and development across a landscape. However, due to the complex nature of forests, fire risk and danger potential maps are considered one of the most difficult thematic layers to build up. Remote sensing and digital terrain data have been intr...

متن کامل

Spatio-Temporal Variation of Suspended Sediment Concentration at Downstream of a Sand Mine

The growing population led to greater human need to use natural resources such as sand and gravel mines. Direct removal of sands from the bed river leads to increase suspended sediment concentrations in downstream of harvested area and creates other problems viz. filling reservoirs, change in hydraulic characteristics of the channel and environmental damages. However, the range of temporal and ...

متن کامل

A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data

Fire detection based on multi-temporal remote sensing data is an active research field. However, multi-temporal detection processes are usually complicated because of the spatial and temporal variability of remote sensing imagery. This paper presents a spatio-temporal model (STM) based forest fire detection method that uses multiple images of the inspected scene. In STM, the strong correlation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Trans. GIS

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2008